Probing of amyloid structure – microscopy and nanoparticles

Patryk Obstarczyka, Maciej Lipoka, Andrzej Żakb and Joanna Olesiak-Bańskaa*

aAdvanced Materials Engineering and Modelling Group, Wrocław University of Science and Technology, Wrocław, Poland

bElectron Microscopy Laboratory, Wrocław University of Science and Technology, Wrocław, Poland

patryk.obstarczyk@pwr.edu.pl

1) $I_{(\alpha)}$

2) $I_{X(\alpha)}$, $I_{Y(\alpha)}$
In our work we present two aspects of amyloid studies:

1) Two-photon microscopy with polarization analysis of **amyloid superstructures**

2) Gold plasmonic nanoparticles self-assembly due to the electrostatic interaction with **amyloid fibrils**

AMYLOIDS

Agregates formed from proteins, marked by a characteristic β-sheet organization with an $\sim 4.7–4.8\text{Å}$ repeat running down the fibril axis

$L. \text{Gremer et al.}, \text{Science}, 06 \text{ Oct 2017, 358, 6359, pp. 116-119}$
Simultaneous detection of X and Y components of fluorescence enables to reveal information about molecular ordering.

CAN AMYLOID AUTO-FLUORESCENCE BE USED TO RESOLVE MOLECULAR ORDERING?

Data fitting model:
Polarization of excitation light (Ex) and emission (Em) are denoted with white arrows.

\(\psi \) - the emission dipole of the dye

\(\Delta \psi \) - aberrations of \(\psi \) due to the molecular rotations

\(\phi \) - rotation of the protofilaments (and fibril) on the XY plane

The average relative angle between the long fibril axis and a transition dipole moment was equal to \(\psi = 30^\circ \) and \(\psi = 29^\circ \) for Thioflavin-T stained samples and autofluorescence, respectively, with \(\Delta \psi \) in both cases equal \(0^\circ \).
Gold plasmonic nanoparticles self-assembly due to the interactions with amyloid fibrils
We show for the first time that **two-photon excited autofluorescence (2PAF)** of amyloids is highly polarized and distributed within ~30° around the long axis of the fibrils.

Comparison with polarization analysis of two-photon excited fluorescence of ThT bound to similar fibrils shows the same conical distribution of fluorophores.

We show that **gold plasmonic nanoparticles self-assembly on amyloid fibrils and chiro-optical properties are induced**. Our methodology allows for preparation of plasmonic systems in protein-directed and controlled manner.

The presented results provide new methods to probe amyloids organization.

We acknowledge funding from First Team "NONA - nonlinear optics, nanoparticles and amyloids,"

Project leader: dr hab. inż. Joanna Olesiak-Bańska, prof. PWr.