Quantum walk and bend-free coupling
in commensurable waveguide arrays
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Perfect transfer
Problem:

If the quantum photonic integrated circuits (PICs) could be constructed
solely of waveguide arrays, how would their building blocks look like?

Method:
It is argued that the waveguide arrays with commensurable
eigenfrequencies satisfy requirements for the basic passive building blocks.

Results and discussion:

Different Wannier-Stark ladder climbing strategies are employed to construct
interconnects and couplers capable of the high-fidelity coherent transfer and
entanglement generation.
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WGAs with commensurable spectra
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e A possible solution are WGA with commensurable eigenspectra.

* They guarantee periodic light propagation that fulfils the functional requirements.

- J
4 )
/ . \ . . . . / Th d' WGA H \
WGA spectrum is chosen as A coupling matrix is inverse € corresponding IS
a combination of eigenvalues designed from the spectrum. implemented by adjusting
from the equidistant Petrovic and Veerman, waveguide spacings djj+1.
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Interconnects for high-fidelity transfer
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Fig. 1 Single photon propagation through a symmetric

WGA with 7 WGs with eigenvalues 0, 1, £100, £10001.
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Parallel transfer via full state revival
Condition: Commensurable eigenspectrum
Perfect transfer via mirroring between
waveguides j and n+1-j
Additional conditions:

* Odd number of waveguides

* Mirror symmetry

e Alternating eigenvalue parity
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Transfer fidelity = 1.
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Fidelity is highly sensitive to deviations of waveguide spacings from the design values.




Equal-energy splitters as entanglement generators
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Fig. 2 Single photon evolution through a WGA k
with 5 WGs and equidistant eigenvalues. The
simulation was performed with single-mode . 4 Functional requirements )
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Periodic bunching and coincidence revivals
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Fig. 3 Coincidence maps at the output of a WGA with 9 WGs and eigenvalues 0, 1, 4, + 9, +14. A photon pair enters at ports 4 and 5.
a) Separable photons. b) Entangled photons. f Conclusion \
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