

A Programmable Rydberg Quantum Simulator

<u>A. Urech^a</u>*, I. Knottnerus^a, T. Plassmann^a, R.J.C. Spreeuw^a, and F. Schreck^a

^a van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam,

Science Park 904, 1098 XH Amsterdam, The Netherlands

* a.a.urech@uva.nl

1. Optical tweezers with strontium

2. Upgrading tweezers

3. Rydberg laser construction

1. Level scheme of strontium

Research Center for Quantu

The relevant level scheme of strontium for imaging, cooling and manipulation of the internal state. The hyperfine manifolds of the fermionic isotope, ⁸⁷Sr, are included for these transitions along with the **Rydberg transitions** that we will use for engineering the interaction. The leakage channel, (5s4d) ¹D₂, from the excited singlet ${}^{1}P_{1}$ state is also shown. The 10 nuclear spin states (/ = 9/2) of ⁸⁷Sr together with the metastable ³P₁ states enable nearly lossless Raman transitions and protected qubit states

^з Р _о	³ Р ₁	³ P ₂
Not magnetic Minutes lifetime	• 22 µs lifetime	 Magnetically tunable m_F-states Minutes lifetime

1. 515 nm Tweezers

Research Center for Quantur

Original tweezer setup

- 515 nm trap light
- Homebuilt objective using commercial lenses
- NA=0.44
- Trap depth of ~mK
- Limited choice of wavelength due to chromatic aberrations

- Histogram of the number of counts collected from ⁸⁸Sr atoms during fluorescence imaging with a ~50% chance of a single atom remaining.
- Background emission of free running tweezer laser leads to amplified leakage to anti-trapped states resulting in an overlap in the 0 and 1 atom signals [1,2].

2. Upgrading tweezers

Research Center for Quantum Soft

To mitigate any issues from off resonant scattering;

- Repumping (a crucial ingredient but still can lead to atom loss if atom is anti-trapped, $\lambda = 448$, 679, and 707 nm) [1-4]
- Proper choice of tweezer wavelength (785-813 nm tweezers trap more excited states than 515 or 532 nm) [1-4]
- Cooling and imaging on the same narrow line transition (reduces trap depth)

- wavelength 785 nm

- waists ~ 0.75 μm
- Spacing between tweezers ~ 5 μm

3. Rydberg laser construction

Rydberg states as a tool to tailor interactions

- Strong dipole-dipole interactions between Rydberg atoms
- Rydberg blockade for quantum information
- Off-resonant driving to dress with Rydberg state
- Attractive or repulsive anisotropic interactions selectable [5]

Extra possibilities using *divalent* strontium atoms

- Detection using the ion core [6]
- Trapping of Rydberg atoms using the ion core transitions [7]
- Fermionic and bosonic isotopes
- Interacting atomic lattice clocks [8]

Laser Requirements

- Tunable from 316.5 324.8 nm to exploit the features of all ${}^{3}P_{J}$ states
- kHz-linewidth for Rydberg state preparation with high fidelity
- Up to 1 W of output power for reaching sufficient interaction strength

n³Sյ⟩; Δ	
-	1
³P」 ¹S₀⟩	<u> </u>

Rydberg dressing

Transition	Lifetime $ au' = rac{ au}{\epsilon^2}$	Interaction strength	Power $\omega_0 = 100 \mu m$	Δ
$^{3}P_{1} \rightarrow 50 \ ^{3}S_{J}$	0.6 ms	100 kHz	0.06 W	0.5 GH
$^{3}P_{1} \rightarrow 50 \ ^{3}S_{J}$	0.6 ms	200 kHz	0.25 W	1.0 GH
$^{3}P_{1} \rightarrow 50 \ ^{3}S_{J}$	1.1 ms	200 kHz	2.0 W	4 GHz
$^{3}P_{0} \rightarrow 50 \ ^{3}S_{J}$	1.1 ms	200 kHz	3.5 W	4 GHz

Future plans and prospects

- Trap single ⁸⁷Sr atoms and perform state selective imaging
- Add SLM, enabling the production of arbitrary trap patterns and atom sorting [9]
- Perform quantum logic gates with qubits/qudits using nuclear spin states and coupling with the ¹S₀-³P_{0,2} transition [10]
- Simulate artificial Gauge fields through Raman dressing of ultranarrow transitions
- Utilize nuclear spin states to study SU(N) physics

- 1. A. Cooper, J. P. Covey, I. S. Madjarov, S. G. Porsev, M. S. Safronova, and M. Endres, "Alkaline-Earth Atoms in Optical Tweezers", Phys. Rev. X 8, 041055 (2018).
- 2. M. A. Norcia, A.W. Young, and A. M. Kaufman, "Microscopic Control and Detection of Ultracold Strontium in Optical-Tweezer Arrays", Phys Rev X 8, 041054 (2018).
- 3. M. A. Norcia, A. W. Young, W. J. Eckner, E. Oelker, J. Ye, and A. M. Kaufman, "Seconds-scale coherence in a tweezer-array optical clock", arXiv:1904.10934v2 (2019).
- 4. I. S. Madjarov, A. Cooper, A. L. Shaw, J. P. Covey, 1 V. Schkolnik, T. H. Yoon, J. R. Williams, 2 and M. Endres, "An Atomic Array Optical Clock with Single-Atom Readout", arXiv:1908.05619v2 (2019).
- 5. C. L. Vaillant et al., "Long-range Rydberg–Rydberg interactions in calcium, strontium and ytterbium", J. Phys. B 45, 135004 (2012).
- 6. I. S. Madjarov, J. P. Covey, A. L. Shaw, J. Choi, A. Kale, A. Cooper, H. Pichler, V. Schkolnik, J. R. Williams, M. Endres, "High-Fidelity Control, Detection, and Entanglement of Alkaline-Earth Rydberg Atoms" arXiv:2001.04455 (2020).
- 7. J. Wilson et al, "Trapped arrays of alkaline earth Rydberg atoms in optical tweezers", arXiv:1912.08754 (2019).
- 8. L. I. R. Gil et al., "Spin Squeezing in a Rydberg Lattice Clock", Phys. Rev. Lett. 112, 103601 (2014).
- 9. D. Barredo, S. de Léséleuc, V. Lienhard, T. Lahaye, A. Browaeys, "An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays", Science 354, 1021-1023 (2016).
- 10. A. Omran et. al., "Generation and manipulation of Schrödinger cat states in Rydberg atom arrays", Science 365, 570–574 (2019).