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Orbit

Size of 
orbit

No. iso.
orbits 10 9 8 7 6

44 6 2 16 10 44 10 16 6 2

17 15 13 9 8

Loops included
 

Loops removed
 

6. Orbits are often identical!

Here, Mij = 1 if graph entanglement class i and  j have isomorphic orbits

No. 6 No. 10 No. 21 No. 22 No. 47 No. 48 No. 148No. 149 No. 151

These graph states all have isomorphic orbits!

Mapping graph state orbits under local complementation
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5. Exploiting symmetry

Here, vertices of the graph states are coloured the same if they produce 
the same graph state under local complementation

Considering isomorphic graphs equal, we only local complement asymmetric vertices

www.miscellaneouscoder.wordpress.com
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2. Orbits of group actions (Cayley graphs)

This produces orbits, similar to the 
re�ection/rotation orbit (above) and 

rubiks cube group (right)

Repeated applications of local 
complementation de�nes 

entanglement classes of locally 
equivalent graph states

wikipedia.org

4. Infering graph properties from their orbits 

•   Orbits with no self-loops do not contain any graph states which have a vertex of degree 1 (a leaf ).

•   Orbits which are trees only contain graphs in which all vertices are at most distance two seperated.

•   'Star' graph states (GHZ states) have only the other star isomorphisms and the fully-connected graph 
states in their orbit, which is itself star (see §1.).

3. Isomorphic graph states
•   We can also consider isomorphic graphs to be equal.

Isomorphic graphs 
distinguished

•   We computed the �rst 576 orbits when considering
     isomorphic graphs equal (up to 10 qubits), and 
     the �rst 146 otherwise (up to 9 qubits).

•   This greatly simpli�es the orbits

•   We provide a program to generate the orbit of any 
     graph, with out data set and a program to draw 
     these �gures (online). 5,6

Isomorphic graphs 
equal

•   Basis change preserves the 'standard' language of measurement-based protocols.

8. Applications & Outlook
•   Local complementation can compile different quantum protocols with the same resource state. 

•   Application in optimising a resource for error correction.

•   Are there more connections between graph properties and quantum properties?

• What can we learn from the symmetry of an orbit?

•   Optimal resource state preparation by interspersing CZ with local complementaiton.4

7. Correlating orbits with quantum properties

•   Orbit diameter and orbit chromatic number correlate strongly with Schmidt measure.
•   For both types of orbit: considering isomorphic graphs equal (C), and not (L). 

•   Chromatic index correlates with Schmidt measure strongly for C and moderately for L.

•   Graph state chromatix index does correlate with Schmidt measure.
•   This is the number of CZ time steps needed to prepare the state.

•   The Schmidt measure correlates with the graph rank width.
•   Important in the complexity of graph state algorithms.

diameter:  The smallest number of local complementations needed to go from qubit i to qubit j

chromatic number: smallest number of colours needed to colour the vertices of a graph so that 

no vertices of the same colour are adjacent

chromatic index: smallest number of colours needed to colour the edges of a graph so that no 

edges of the same colour are adjacent

orbit size: number of graph states in the orbitC orbit: Orbit with isomorphic graphs equal

L orbit: Orbit without isomorphic graphs equal Schmidt measure: entanglement metric

•   The  min no. edges of a graph state in the orbit does correlate with Schmidt measure.

4
•   Local complementation can reduce the number of CZ gates required  .
•   This is the total number of CZs needed to prepare the state.

Object Property Correlation

L orbit diameter orbit size 0.060 ± 0.05
diameterL orbit Schmidt measure 0.93  ± 0.02

L orbit chromatic index Schmidt measure 0.70 ± 0.05
L orbit chromatic number Schmidt measure 0.44 ± 0.11

graph state min. no edgesSchmidt measure 0.78 ± 0.02
graph state chromatic indexSchmidt measure –0.17 ± 0.02

rank widthgraph state Schmidt measure 0.62 ± 0.03

C orbit diameter orbit size 0.62 ± 0.03
diameter Schmidt measure 0.77 ± 0.02C orbit

chromatic number Schmidt measure 0.67  ± 0.02C orbit
chromatic index Schmidt measure 0.81 ± 0.04C orbit

2. neighbourhood
3. complement

4. output

1. input

1. Graph states & local complementation
Graph states have a one-to-one  correspondance

 with a mathematical graph  G = (V, E):

Local complementation, implemented with U   ,
traverses all locally equivalent graph states

LC
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