Post-doctoral position
To study coherent effects in strong coupling of quantum emitters to plasmonic cavities

Plasmonic cavities can strongly couple to one or a few individual emitters, e.g. quantum dots, even at room temperature, as first shown by our lab in 2016*. The time is now ripe for using strong coupling in plasmonic cavities for exciting quantum optical studies involving coherent coupling between emitters. We plan to insert two identical or different emitters into cavities and look for the signatures of coherent interactions using spectroscopy and photon statistics.

If you are as excited as we are by the prospects of these studies, and have an excellent background in (nano)optics, please contact Gilad Haran at the email below. Experience in spectroscopy at cryogenic temperatures will be an advantage.

* Santhosh et al., Nature Communications (2016) 7:11823

Prof. Gilad Haran, Weizmann Institute of Science
gilad.haran@weizmann.ac.il

For more details on the Haran research group see www.weizmann.ac.il/chemphys/cfharan
Post-doctoral position

To study correlated motion in membranes using single-particle tracking methods

Theory has shown that motion in biological membranes should be correlated over distances of a micron or less. We are studying this correlated motion experimentally.

A candidate for the open position should have good background in physics or biophysics, with knowledge in statistical physics and soft matter. He/she should be able to work in a flexible research environment, including the ability to write own data analysis programs, using software like Matlab.

If you are interested, write to:
Prof. Gilad Haran, Weizmann Institute of Science
gilad.haran@weizmann.ac.il

For more details on the Haran research group see
www.weizmann.ac.il/chemphys/cfharan