

Ionic Liquid penetrates inside MWCNT and C60 and improve the IV curve through the reduction of cathode work function and doping of C60

ITMO UNIVERSITY	Numerical modelling of ionically gated small molecule OPV structure			
	Abolfazl Mahmoodpoor, Pavel Voroshilov and Anvar Zakhidov			
Introduction Theory		Simulation Implementation	Results	Conclusion
Optical part \rightarrow Transfer Matrix Method		Electrical Part -> Drift Diffusion Model		
$Q(x,\nu) = \frac{1}{2}c\epsilon_0\alpha n \mid E(x) \mid^2$		Main system of equation	Boundary Cond	itions
$G(x,\nu) = Q(x,\nu)/(h\nu)$		$\nabla^2 V = \rho/\epsilon,$	$n_{\rm th} = N_{\rm LUMO} \cdot exp$	$\left(\frac{-q\phi_n}{k_BT}\right)$
$G(x) = \int G(x,\nu) d\nu$		$\nabla \cdot J_i = \pm q U \qquad i = n, p,$	$p_{\rm th} = N_{\rm HOMO} \cdot exp\bigg(\frac{-q}{2}\bigg)$	$\left(\frac{\phi_n - E_{\text{gap}}}{k_B T}\right),$
		$J_n = qn\mu_n \nabla V_{\rm LUMO} + \mu_n k_B T \nabla n$	$n_{\rm th} = N_{\rm LUMO} \cdot exp\left(\frac{-e}{2}\right)$	$\frac{q(\phi_p - E_{\rm gap})}{k_B T} \bigg)$
[1] Koster, L. J.; Smits, E.; Mihailetchi, V.; Blom, P. Device		$J_p = qn\mu_p \nabla V_{\rm HOMO} + \mu_p k_B T \nabla p$	$p_{\rm th} = N_{\rm HOMO} \cdot exp$	$\left(\frac{-q\phi_p}{k_BT}\right),$
model for th heterojunction 085205. [2] Grove, Semiconductor	e operation of polymer/fullerene bulk solar cells. Physical Review B2005, 72, A. S. Physics and Technology of Devices; John Wiley & Sons, Inc., 1967.		$V_{\rm anode} - V_{\rm cathode} =$	$= V_a - V_{bi}$

	Numerical modelling of ionically gated small molecule OPV structure		
	Abolfazl Mahmoodpoor, Pavel Voroshilov and Anvar Zakhidov	V	
Introduc	tion Theory Simulation Implementation	Results Conclusion	
	Excitons Generation \rightarrow Onsager-Braun theory	Recombination → Langevin recombination	
$k_{\rm diss} = -\frac{1}{4}$	$\frac{3\gamma}{\pi a^3} exp\left(\frac{E_b}{k_B T}\right) (1+b+\frac{b^2}{3}+\frac{b^3}{18}+\frac{b^4}{180}+\ldots). \qquad b = q^3 \nabla V / (8\pi \epsilon_0 \epsilon_r k_B^2 T),$	$R_L = \zeta \gamma (np - n_i^2).$	
$p = \frac{k}{k_{\rm dis}}$	$\frac{2diss}{k_F} \cdot k_F$	$n_i = \sqrt{N_{\rm HOMO} N_{\rm LUMO}} exp(-\frac{E_{\rm gap}}{2k_B T})$	
$P = \int_0^\infty p \frac{4}{\sqrt{\pi a^3}} r^2 exp\left(\frac{-r^2}{a^2}\right) dr.$ for considering local disorder in organic material the dissociation rate is integrated over a Gaussian distribution of binding distances $U = -q(PG - (1 - P)R),$		$\gamma = q(\mu_n + \mu_p) / (\epsilon_r \epsilon_0).$	
[3] Mingebachin polymer-ful[4] Barker, A.devices.Phys.	n, M.; Walter, S.; Dyakonov, V.; Deibel, C. Direct and charge transfer state mediated photogeneration lerene bulk heterojunction solar cells.Appl. Phys. Lett2012, 100 ; Ramsdale, C. M. Modeling the current-voltage characteristics of bilayer polymer photovoltaic Rev. B2003, 67	 [5] Langevin, P. Recombinaison et mobilites des ions dans les gaz. Ann. Chim. Phys.1903, 28, 433–530. 	

[6] Torben Menke, Debdutta Ray, Hans Kleemann, Karl Leo and Moritz Riede, Determining doping efficiency and mobility from conductivity and Seebeck data of n-doped C60 layers, Basic Solid State Physics, 252(8), 1877–1883

Fig.7- Fitted IV curves for different barrier, different mobility and different dopant concentration

Fig.8- Fitted IV curve for 0.14 V barrier and considering different phenomena

Fig.9- Mobility changing for different dopant concentration correspond to different gate voltage

Fig.10- Energy diagram of OPV when the gate voltage is 0 V (left) and 2 V (right) at the point of maximum extracted power

- 1. Penetration of dopant from ionic liquid into the cathode raises the Fermi level of the cathode significantly in a way that the potential barrier between LUMO level of the ETL layer and cathode becomes zero.
- 2. The dopant penetrates further from the cathode side and reaches the ETL layer affecting the macroscopic properties of the ETL layer.
- 3. The dominant phenomena in improving OPV performance using ionic liquid is raising of the cathode Fermi level and forming an ohmic contact between the ETL layer and cathode.

Danila S. Saranin, Abolfazl Mahmoodpoor, Pavel M. Voroshilov, Constantin R. Simovski, and Anvar A. Zakhidov^{*}, Ionically Gated Small Molecule OPV: Interfacial doping of Charge collector and Transport layer, <u>arXiv:1805.10954</u>.

Contacts: * zakhidov@utdallas.edu