Micromagnetic Modeling with Account for the Correlations Between Closest Neighbors

Ivanov A.V., Zipunova E.V.

1 Keldysh Institute of Applied Mathematics, Miusskaya sq., 4 Moscow, 125047, Russia

Introduction

In the development of spintronic devices, a large amount of numerical computations is essential [1]. For a correct description of device operation, temperature fluctuations must be taken into consideration, since they play a major role in the device behavior. Some devices require a model that is correct for a wide range of temperatures, including the vicinity of the phase transition. The atomistic approach is the most adequate for the task, but its computational complexity is unacceptably high for engineering problems.

In terms of the balance between computational complexity and model adequacy, micromagnetic approach is optimal. The influence of the temperature fluctuations is described with the LLBE (Landau–Lifshitz–Bloch equation [2]). In the LLBE derivation, the mean field approximation (MFA) was used for the closure of the BBGKY hierarchy. With such approximation, correlations between magnetic moments of the closest atoms are neglected. Such neglect leads to various artifacts in modeling results, the most noticeable of which is that the relaxation time might become less by an order of magnitude.

References

Micromagnetic Modeling with Account for the Correlations Between Closest Neighbors

Ivanov A.V., Zipunova E.V.

Main equations

\[
\begin{align*}
\frac{d\mathbf{m}_i}{dt} &= -\gamma (\mathbf{m}_i \times \mathbf{H}^\text{eff}_i) - \alpha \gamma (\mathbf{m}_i \times \nabla \times \mathbf{m}_i) + 2\sqrt{\alpha \gamma T} \xi(m_i, t), \\
\mathbf{H}^\text{eff}_i &= -\nabla m_i W = \mathbf{H}^\text{exch}_i + \mathbf{H}^\text{anis}_i + \mathbf{H}^\text{dip}_i + \mathbf{H}^\text{ext}, \\
\mathbf{H}^\text{exch}_i &= \sum_j J_{ij} m_j, \\
\mathbf{H}^\text{anis}_i &= 2K \sum_i n_K (n_K \cdot m_i), \\
\mathbf{H}^\text{dip}_i &= \sum_j \left(\frac{3(m_j \cdot r_{ij})r_{ij} - m_j r_{ij}^2}{r_{ij}^5} \right), \quad r_{ij} = r_i - r_j.
\end{align*}
\]

where \(\gamma \) is the gyromagnetic ratio, \(\alpha \) is the damping parameter, \(W \) is full energy, \(T \) is temperature measured in energy units, \(\xi(m, t) \) is three-dimensional white noise, which doesn’t change the absolute value of the magnetic moment and provides unit directional dispersion [3], \(\nabla m_i \) is the operator \(\nabla \) for magnetic moment \(m_i \), \(H_{\text{exch}} \) is the exchange magnetic field, \(J_{ij} \) is the exchange integral (it is equal to zero almost everywhere except for the closest neighbors), \(H_{\text{anis}} \) is the anisotropy magnetic field, \(K \) is the anisotropy coefficient, \(n_K \) is the orientation of the anisotropy axis, \(H_{\text{dip}} \) is the dipole interaction (magnetostatic) field, \(H_{\text{ext}} \) is the external magnetic field. Hereafter we work in the specific unit system.

The Fokker-Planck (Brown) equation for one-particle distribution function \(f(m, r) \) for magnetization:

\[
\frac{df(m, r, t)}{dt} + \nabla f(m, r, t) \cdot [\mathbf{m} \times \mathbf{H}^\text{eff}] = \alpha \nabla \cdot \left[\mathbf{m} \times \left(\mathbf{H}^\text{eff} - T \nabla f \right) \right],
\]

\[
\mathbf{H}^\text{exch} = \frac{1}{f(m, r)} \sum_j J_{ij} \int \mathbf{m}_j f^{(2)}(m_i, m_j) d\mathbf{m}_j, \quad \langle W \rangle = -\frac{1}{2} \int \mathbf{m}_i \cdot \mathbf{m}_j f^{(2)}(m_i, m_j) d\mathbf{m}_i d\mathbf{m}_j.
\]

References

Micromagnetic Modeling with Account for the Correlations Between Closest Neighbors

Ivanov A.V., Zipunova E.V.

Introduction

Main equations

Theory

Correlations

Results

Conclusion

Landau-Lifshitz-Bloch equation

The mean field approximation:

\[f_{ij}^{(2)} \approx f_i \cdot f_j \]

\[\mathbf{H}^{\text{exch}}_{\text{MFA}} = a^2 J \Delta_{ij} (\mathbf{m}) + n_b J (\mathbf{m}), \]

where \(a \) is the distance between the closest neighbors, \(J \) is integral of exchange between the closest neighbors, \(n_b \) is the number of the closest neighbors.

Equation for mean magnetization evolution \(\langle m \rangle(t) \):

\[\dot{\langle m \rangle} = -\gamma \langle [m] \times \mathbf{H}^t \rangle - 2 \gamma K (\Phi + \alpha \Theta) - \alpha \gamma \langle m \otimes m - \mathbf{I} \rangle \cdot (\mathbf{H}^t + n_b \epsilon_G J \langle m \rangle) - 2 \alpha \gamma T (\mathbf{m}), \]

where \(H_L \) depends on \(\langle m \rangle \) linearly, \(\epsilon_G < 1 \) is the Garanin coefficient. One needs \(\epsilon_G \) to obtain the right critical temperature [4].

Correlation magneto-dynamics equation

Let’s approximate two-particle function as in [5]:

\[f_{ij}^{(2)} (m_i, m_j, t) \approx \frac{1}{Z^{(2)}} \int [f_i (m_i, t) f_j (m_j, t)] \rho e^{\lambda m_i m_j} d m_i d m_j, \]

\[Z^{(2)} = \int \int [f_i (m_i, t) f_j (m_j, t)] \rho e^{\lambda m_i m_j} d m_i d m_j, \]

\[\rho = \arg \min \int \int [f_i (m_i, t) - \int f_{ij}^{(2)} (m_i, m_j, t)]^2 d m_i d m_j. \]

Exchange field may be computed as:

\[\mathbf{H}^{\text{exch}} \approx a^2 J \Delta_{ij} (\mathbf{m}) + n_b \gamma \mathbf{V} \mathbf{m} \], \quad \gamma = \frac{1 - \rho}{\lambda}. \]

Multiplying Fokker-Planck equation by \(m \) and integrating over \(d m \) we obtain

\[\dot{\langle m \rangle} = -\gamma [\langle m \rangle \times \mathbf{H}^t] - 2 \gamma K (\Phi + \alpha \Theta) - \alpha \gamma \langle m \otimes m - \mathbf{I} \rangle \cdot (\mathbf{H}^t + 2 \alpha \gamma (T - n_b J \gamma) \langle m \rangle. \]

References

Correlation magneto-dynamics equation

One more equation for couple correlations (exchange energy per link) is needed to calculate:
\[\langle \eta \rangle = \int \int_{\text{spins}} m_i \cdot m_j \, dm_i \, dm_j. \]

The second link in BBGKY hierarchy describes the evolution of \(f_{ij}^{(2)} \). Thus, multiplying it by \((m_i \cdot m_j) \) and integrating over \(dm_i \, dm_j \) for BCC lattice we obtain:
\[
\frac{-\langle \eta \rangle}{2\alpha\gamma} = -2H^T \cdot \langle m \rangle \Gamma + 2K\Psi + J [\Lambda + 6Q] + 2T\langle \eta \rangle,
\]
\[
\Psi = \langle m_i \cdot [m_j \times [m_j \times n_K]] (m_j \cdot n_K) \rangle, \quad Q = \langle m_i \cdot [m_j \times [m_j \times m_k]] \rangle, \quad \Lambda = \frac{1-2\rho}{\rho} \left(1 - \langle \eta^2 \rangle \right) - 2 \frac{1-\rho}{\rho \lambda} \langle \eta \rangle.
\]

To calculate \(Q \) the three-particle distribution function \(f_{ijk}^{(3)} \) is required. The following steps depend on the structure of crystal lattice. For BCC lattice we consider symmetrical four-particle distribution function \(f_{ijkl}^{(4)} \). Diagonal links \(\epsilon \varsigma \) in such function are defined only by indirect correlations. Consequently, \(Q(m, \eta, T) \) is computed numerically and is defined as a tabulated function.

The expressions for \(\Upsilon(m, \eta), \Psi(m, \eta), \Lambda(m, \eta) \) can be approximated analytically [6].

References
Micromagnetic Modeling with Account for the Correlations Between Closest Neighbors

Ivanov A.V., Zipunova E.V.

Modeling results

Results of modeling with atomistic (LL), LLBE (MFA) and CMD approaches for different H_{ext} and K: dependence of the mean magnetisation $\langle m \rangle$, mean full energy $\langle W \rangle$ and relaxation time τ on the temperature T.
In this work, the micromagnetic equation of the LLBE type is obtained with the use of the two-particle distribution function which takes into account correlations between nearest neighbors. Furthermore, the equation for pair correlations (exchange energy) is derived. Thus, a system of CMD equations is derived. This was made for a BCC lattice, which has two sublattices. An analogous system of equations can be obtained for multi-sublattice cases. The equation for pair interactions would include different coefficients. Unlike the traditional Landau–Lifshitz–Bloch equation, which is obtained in mean field approximation, the CMD equations describe the energy and relaxation process in magnetic materials correctly. It allows achieving better accuracy in the modeling of spintronic devices and magnetic nanoelectronics.

Contacts

aiv.racs@gmail.com
e.zipunova@gmail.com