Generation of biogenic secondary organic aerosols for the assessment of their health impacts

Introduction

Secondary organic aerosols (SOA) are formed in situ in the atmosphere by the oxidation of VOCs, particularly biogenic ones\(^1\). In the Mediterranean region, the family of monoterpenes, to which limonene belongs, is believed to strongly contribute to the formation of these ultrafine particles\(^2\). After inhalation, SOA could lead to an abnormally high production of reactive oxygen species (ROS) causing oxidative stress\(^3,4\).

The objectives of this project are:

- Generation of SOAs under controlled conditions by limonene ozonolysis,
- Their physico-chemical characterisation,
- Evaluation of their toxicity by acellular and cellular methods.

\(^1\) Hallquist et al. 2009 \(^2\) Panopoulou et al. 2020 \(^3\) Chowdurry et al. 2019 \(^4\) Lin et al. 2016
Laminar aerosol flow reactor

SAGE – IMT Lille Douai

- Length: 100 cm
- Diameter: 10 cm
- Material: Pyrex
- Ozone concentration: 20 ppm
- Limonene concentration: 10 ppm

The generated SOAs contain about **66 w% of carbon** as generally found for SOA from terpenes⁵.

⁵ Lchhabra et al., 2011
Introduction

ONLINE analysis of the particle phase using a scanning mobility particle sizer (SMPS):

- DMA, TSI, model 3082
- CPC, TSI, model 3750

Results:

- SOA diameter mode: 105.5 nm
- Mean total mass concentration: 23 mg/m³
- Mean total number concentration: 1.94 x 10⁷ particles/cm³
OFFLINE acellular tests of the oxidative potential of AOS:

Acid Ascorbic test (AA test)
- Potassium phosphate buffer solution (pH = 7.4)
- Temperature: 37 °C
- \(C_{\text{final}} \) of AA: 200 \(\mu \text{M} \)
- Absorbance: 265 nm

Dithiothreitol test (DTT test)
- Potassium phosphate buffer solution (pH = 7.4)
- Temperature: 37 °C
- \(C_{\text{final}} \) of DTT: 0.1 mM
- \(C_{\text{final}} \) of DTNB: 0.14 mM
- Absorbance: 412 nm

![Graphs showing AA test and DTT test results](image)
Generation of biogenic secondary organic aerosols for the assessment of their health impacts

Introduction

Experimental system

Particle size analysis

Oxidative potential

Biological assays

Conclusion

Cell viability test:

Human bronchial epithelial cells (BEAS-2B cell line)

Intracellular ATP concentrations of BEAS-2B cells were determined using the CellTiter-Glo luminescent cell viability kit (Promega).

Result:

Significant decreases of BEAS-2B cell viability are reported after exposure to increasing SOA concentrations and the calculated IC$_{50}$ value was 16.5 μg/cm2.

Data represent mean values from two independent experiments in quadruplicate.

LogIC$_{50}$ = 1.2 μg/cm2

IC$_{50}$ = 16.5 μg/cm2

R2 = 0.9

*p < 0.01 to Dunnett’s test
Generation of biogenic secondary organic aerosols for the assessment of their health impacts

Cell measurement of ROS

Seeding of BEAS-2B cells at a density of 2x10⁴ cells/well in LHC-9 culture medium (24 h)

Diluted carboxy-DCFH-DA (10 µM) (40 min. at 37ºC)

Exposure of SOA (24 h)

Replaced with PBS

Microplate reader
- λ excitation = 485 nm
- λ emission = 525 nm

Result:

Intracellular ROS generation in BEAS-2B cells shows a tendency to increase starting at 2.5 µg/cm² and was significantly higher in cells exposed to 10 µg/cm² of SOA compared to the control cell.

Data represent mean values from three independent experiments in triplicate.

* p < 0.05 Dunnett’s test

Quantification of intracellular ROS after SOA exposure during 24 h
Conclusions:

- Our setup based on a laminar flow reactor gives reproducible and significant amounts of SOA suitable for conducting acellular and cellular toxicological tests.
- The SOA generated in the ultrafine particles size range, can penetrate deeply into the human respiratory system.
- Chemical tests of oxidative potential (AA, DTT) show the ability of SOA to oxidize some target molecules.
- SOA significantly decrease intracellular ATP concentrations and induce ROS production in human bronchial epithelial cells (BEAS-2B).

Perspectives:

- Vary the conditions of SOA synthesis (other VOCs, other oxidants, presence or absence of NOx or inorganic nuclei).
- Study the influence of the chemical composition of SOA on their health impact.
- Extend the study to include SOA freshly collected from the ambient air.
- Investigate the oxidation of some target molecules (proteins, lipids, DNA) in BEAS-2B cells.